交易者的迷宫——不要总是盯着自己 刚才看到一个帖子,有个坛友用一个比喻在自嘲——追着咬自己尾巴的狗。别说新人,高手尚且如此。 对于这个问题,我个人并不否定在交易过程中一边关注行情,一边关注自身,
这一篇,我们讨论广义线性回归模型的具体形式的另一种形式,逻辑回归(logistic regression)。 逻辑回归是用来做分类任务的。分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上。学
本章我们要讨论一种简单的非线性模型, 用来解决回归与分类问题, 称为决策树(decision tree)。首先, 我们将用决策树做一个广告屏蔽器, 可以将网页中的广告内容屏蔽掉。之后, 我们介绍集成学
一、置信区间 置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个
现在有一张朱迪的照片,这张照片有500多列的像素点构成,但是大部分地方都是白色的,相互没有什么差别,也就是说图像中有很多列都是相互线性相关的,这些列向量对我们接受图像信息没有更大的帮助。那么我们能不能
这篇文章主要解读什么是信息熵及其相关概念,以及如何进行信息增益的计算和它在decision tree中的运用。 信息熵与热力学熵 学过化学或热力学的同学可能了解热力学熵。 熵的概念由德国物理学家克
1、分形理论简介 一直以来,有效市场假说 ( EMH)作为一种线性、简单的均衡范式主宰着金融经济学的理论研究;然而 , 实证研究表明 , 资本市场的波动具有很多复杂和有趣的特征 , 这些
下面,使用python模块库sklearn自带的iris标准数据集进行简单测试。 获得的分类图为: 此外,尝试在优矿平台上,对股票的涨跌幅进行分类,选取的指标包括PE、KDJ_D,KDJ_J和ARBR
机器学习中的预测问题通常分为2类: 回归 与 分类 。简单的说回归就是预测数值,而分类是给数据打上标签归类。本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。 本例中使用
机器识别手写数字的问题早已经解决,如今机器识别的准确率已经超过99%。事实上,这种问题无法通过一条条规则去hard code式的解决,我们不得不承认机器确实学到了东西。但我们好奇的是机器到底学到了什么
一、套利理论 套利是指期货市场参与者利用不同月份、不同市场、不同商品之间的差价。同时买入和卖出两种不同种类的期货合约以从中获取无风险利润的交易行为。套利一般有三种形式:跨期套利、跨市套利、跨品种套
一、 功能概述 关键词词频&网络图是以股票论坛、 个股新闻、研究报告三个网站作为数据源,以文本数据挖掘作为核心技术,以 Lucene 检索作为系统框架, 以证券分析为目的, 实现的智能文
大数据指的是创建的数据和供分析的数据的数量与速率迅速增加。大数据使分析师和数据专家有机会获得更好的见解,进行更明智的决策,但是它同时也会带来许多的挑战:可用的内存可能无法足以处理大数据集,可能需要花太
1.算法介绍: kNN (k-Nearest Neighbour) 算法是一种用于分类和回归的非参数的方法,可以用目标点周围所观察到的数据得平均值来预测出目标点 x 的值。本文将会介绍kNN的回归和分