长短期记忆模型LSTM 首先想,为什么RNN的记忆性不够?我们可以把梯度消失问题转换成比较形象的解释,例如可能是输入权重Win没有很好地过滤掉输入噪音,还有可能是输出权重W_out没有很好地输出有用的
参照 char-rnn-tensorflow,使用RNN的字符模型,学习并生成古诗。 准备环境 tensorflow 训练 python train.py在使用GPU的情况下,两个小时内即可
在上一篇推文中,提到了如何运用序列建模进行机器翻译,机器翻译系统主要包含编码器和解码器,编码器负责将待翻译的句子进行特征表示,而解码器则负责将此特征用另外一种语言表示出来。神经机器翻译模型(Neura
1.原理概述 序列学习其实是深度学习中的一个应用非常广泛的概念,例如语音识别、语言建模、机器翻译、机器作曲、机器写稿、自动对话、QA系统等都属于序列学习的领域,今天讲讲解如何运用序列建模的思想来构建一
一般来说,用pandas处理小于100兆的数据,性能不是问题。当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败。 当然,像Spark这类的工具能够胜任处
前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构。 最基础的Seq2Seq
问题类型1:参数估计 真实值是否等于X? 给出数据,对于参数,可能的值的概率分布是多少? 例子1:抛硬币问题 硬币扔了n次,正面朝上是h次。 参数问题 想知道 p 的可能性。给定 n 扔的次数
本次推文介绍用线性模型处理回归问题。从简单问题开始,先处理一个响应变量和一个解释变量的一元问题。然后,介绍多元线性回归问题(multiple linear regression),线性约束由多个解释变
前提: 假设你熟悉Python,TensorFlow和Jupyter notebooks。 我们的目标只是可视化计算图。 TensorFlow操作形成计算图。 而对于简单的例子,你可能可以查看代码
写在前面的话 深度强化学习可以说是人工智能领域现在最热门的方向,吸引了众多该领域优秀的科学家去发掘其能力极限。而深度强化学习本身也由于其通用性备受各个应用领域推崇,从端对端游戏控制、机器人手臂控制、推
1、引言 构建量化策略,首先需要找到具有所谓alpha的特征量,将这些特征量输入到数学模型学习出买入或者卖出信号,然后根据一定的出场规则出场。数学模型各种各样,有诸如线性回归、logistic回归的线
每一个股民都想选到强势股,因为这样的个股涨的非常快,也可以快速带来收益。在操作强势股票的时候,我们需要对个股进行k线技术形态的分析,还需要看盘中分时线形态。 强势个股的分时线通常情况下会比较挺拔有
导读: 通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。 每个算法都看了好几个视频,挑出讲的最清
这一篇,我们讨论广义线性回归模型的具体形式的另一种形式,逻辑回归(logistic regression)。 逻辑回归是用来做分类任务的。分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上。学